Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Cell ; 187(8): 1955-1970.e23, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503282

RESUMO

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.


Assuntos
Envelhecimento , Encéfalo , Neurônios , Oligodendroglia , Humanos , Envelhecimento/genética , Envelhecimento/patologia , Cromatina/genética , Cromatina/metabolismo , Mutação , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Análise da Expressão Gênica de Célula Única , Sequenciamento Completo do Genoma , Encéfalo/metabolismo , Encéfalo/patologia , Polimorfismo de Nucleotídeo Único , Mutação INDEL , Bancos de Espécimes Biológicos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia
2.
Nat Commun ; 15(1): 2106, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453887

RESUMO

In all terrestrial vertebrates, the parathyroid glands are critical regulators of calcium homeostasis and the sole source of parathyroid hormone (PTH). Hyperparathyroidism and hypoparathyroidism are clinically important disorders affecting multiple organs. However, our knowledge regarding regulatory mechanisms governing the parathyroids has remained limited. Here, we present the comprehensive maps of the chromatin landscape of the human parathyroid glands, identifying active regulatory elements and chromatin interactions. These data allow us to define regulatory circuits and previously unidentified genes that play crucial roles in parathyroid biology. We experimentally validate candidate parathyroid-specific enhancers and demonstrate their integration with GWAS SNPs for parathyroid-related diseases and traits. For instance, we observe reduced activity of a parathyroid-specific enhancer of the Calcium Sensing Receptor gene, which contains a risk allele associated with higher PTH levels compared to the wildtype allele. Our datasets provide a valuable resource for unraveling the mechanisms governing parathyroid gland regulation in health and disease.


Assuntos
Cálcio , Glândulas Paratireoides , Animais , Humanos , Cálcio/metabolismo , Glândulas Paratireoides/metabolismo , Hormônio Paratireóideo/genética , Hormônio Paratireóideo/metabolismo , Cromatina/genética , Epigênese Genética
3.
Nat Genet ; 56(3): 541-552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361034

RESUMO

Mutational signature analysis is a recent computational approach for interpreting somatic mutations in the genome. Its application to cancer data has enhanced our understanding of mutational forces driving tumorigenesis and demonstrated its potential to inform prognosis and treatment decisions. However, methodological challenges remain for discovering new signatures and assigning proper weights to existing signatures, thereby hindering broader clinical applications. Here we present Mutational Signature Calculator (MuSiCal), a rigorous analytical framework with algorithms that solve major problems in the standard workflow. Our simulation studies demonstrate that MuSiCal outperforms state-of-the-art algorithms for both signature discovery and assignment. By reanalyzing more than 2,700 cancer genomes, we provide an improved catalog of signatures and their assignments, discover nine indel signatures absent in the current catalog, resolve long-standing issues with the ambiguous 'flat' signatures and give insights into signatures with unknown etiologies. We expect MuSiCal and the improved catalog to be a step towards establishing best practices for mutational signature analysis.


Assuntos
Música , Neoplasias , Humanos , Neoplasias/genética , Mutação , Carcinogênese/genética , Mutação INDEL
4.
Nat Genet ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388848

RESUMO

Whole chromosome and arm-level copy number alterations occur at high frequencies in tumors, but their selective advantages, if any, are poorly understood. Here, utilizing unbiased whole chromosome genetic screens combined with in vitro evolution to generate arm- and subarm-level events, we iteratively selected the fittest karyotypes from aneuploidized human renal and mammary epithelial cells. Proliferation-based karyotype selection in these epithelial lines modeled tissue-specific tumor aneuploidy patterns in patient cohorts in the absence of driver mutations. Hi-C-based translocation mapping revealed that arm-level events usually emerged in multiples of two via centromeric translocations and occurred more frequently in tetraploids than diploids, contributing to the increased diversity in evolving tetraploid populations. Isogenic clonal lineages enabled elucidation of pro-tumorigenic mechanisms associated with common copy number alterations, revealing Notch signaling potentiation as a driver of 1q gain in breast cancer. We propose that intrinsic, tissue-specific proliferative effects underlie tumor copy number patterns in cancer.

5.
Clin Genitourin Cancer ; 22(2): 558-568.e3, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38342659

RESUMO

INTRODUCTION/BACKGROUND: Immune checkpoint inhibitors (ICIs) have limited efficacy in prostate cancer (PCa). Better biomarkers are needed to predict responses to ICIs. We sought to demonstrate that a panel-based mutational signature identifies mismatch repair (MMR) deficient (MMRd) PCa and is a biomarker of response to pembrolizumab. PATIENTS AND METHODS: Clinico-genomic data was obtained for 2664 patients with PCa sequenced at Dana-Farber Cancer Institute (DFCI) and Memorial Sloan Kettering (MSK). Clinical outcomes were collected for patients with metastatic castration-resistant PCa (mCRPC) treated with pembrolizumab at DFCI. SigMA was used to characterize tumors as MMRd or MMR proficient (MMRp). The concordance between MMRd with microsatellite instability (MSI-H) was assessed. Radiographic progression-free survival (rPFS) and overall survival (OS) were collected for patients treated with pembrolizumab. Event-time distributions were estimated using Kaplan-Meier methodology. RESULTS: Across both cohorts, 100% (DFCI: 12/12; MSK: 43/43) of MSI-H tumors were MMRd. However, 14% (2/14) and 9.1% (6/66) of MMRd tumors in the DFCI and MSK cohorts respectively were microsatellite stable (MSS), and 26% (17/66) were MSI-indeterminate in the MSK cohort. Among patients treated with pembrolizumab, those with MMRd (n = 5) versus MMRp (n = 14) mCRPC experienced markedly improved rPFS (HR = 0.088, 95% CI: 0.011-0.70; P = .0064) and OS (HR = 0.11, 95% CI: 0.014-0.80; P = .010) from start of treatment. Four patients with MMRd experienced remissions of >= 2.5 years. CONCLUSION: SigMA detects additional cases of MMRd as compared to MSI testing in PCa and identifies patients likely to experience durable response to pembrolizumab.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Síndromes Neoplásicas Hereditárias/induzido quimicamente , Síndromes Neoplásicas Hereditárias/tratamento farmacológico
6.
medRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38293061

RESUMO

Despite the overall efficacy of immune checkpoint blockade (ICB) for mismatch repair deficiency (MMRD) across tumor types, a sizable fraction of patients with MMRD still do not respond to ICB. We performed mutational signature analysis of panel sequencing data (n = 95) from MMRD cases treated with ICB. We discover that T>C-rich single base substitution (SBS) signatures-SBS26 and SBS54 from the COSMIC Mutational Signatures catalog-identify MMRD patients with significantly shorter overall survival. Tumors with a high burden of SBS26 show over-expression and enriched mutations of genes involved in double-strand break repair and other DNA repair pathways. They also display chromosomal instability (CIN), likely related to replication fork instability, leading to copy number losses that trigger immune evasion. SBS54 is associated with transcriptional activity and not with CIN, defining a distinct subtype. Consistently, cancer cell lines with a high burden of SBS26 and SBS54 are sensitive to treatments targeting pathways related to their proposed etiology. Together, our analysis offers an explanation for the heterogeneous responses to ICB among MMRD patients and supports an SBS signature-based predictor as a prognostic biomarker for differential ICB response.

7.
Proc Natl Acad Sci U S A ; 120(51): e2300681120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38100419

RESUMO

Idiopathic normal pressure hydrocephalus (iNPH) is an enigmatic neurological disorder that develops after age 60 and is characterized by gait difficulty, dementia, and incontinence. Recently, we reported that heterozygous CWH43 deletions may cause iNPH. Here, we identify mutations affecting nine additional genes (AK9, RXFP2, PRKD1, HAVCR1, OTOG, MYO7A, NOTCH1, SPG11, and MYH13) that are statistically enriched among iNPH patients. The encoded proteins are all highly expressed in choroid plexus and ependymal cells, and most have been associated with cilia. Damaging mutations in AK9, which encodes an adenylate kinase, were detected in 9.6% of iNPH patients. Mice homozygous for an iNPH-associated AK9 mutation displayed normal cilia structure and number, but decreased cilia motility and beat frequency, communicating hydrocephalus, and balance impairment. AK9+/- mice displayed normal brain development and behavior until early adulthood, but subsequently developed communicating hydrocephalus. Together, our findings suggest that heterozygous mutations that impair ventricular epithelial function may contribute to iNPH.


Assuntos
Hidrocefalia de Pressão Normal , Hidrocefalia , Humanos , Camundongos , Animais , Adulto , Pessoa de Meia-Idade , Hidrocefalia de Pressão Normal/genética , Hidrocefalia de Pressão Normal/complicações , Hidrocefalia/genética , Encéfalo , Plexo Corióideo , Mutação , Proteínas
9.
Sci Data ; 10(1): 813, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985666

RESUMO

Somatic mosaicism is defined as an occurrence of two or more populations of cells having genomic sequences differing at given loci in an individual who is derived from a single zygote. It is a characteristic of multicellular organisms that plays a crucial role in normal development and disease. To study the nature and extent of somatic mosaicism in autism spectrum disorder, bipolar disorder, focal cortical dysplasia, schizophrenia, and Tourette syndrome, a multi-institutional consortium called the Brain Somatic Mosaicism Network (BSMN) was formed through the National Institute of Mental Health (NIMH). In addition to genomic data of affected and neurotypical brains, the BSMN also developed and validated a best practices somatic single nucleotide variant calling workflow through the analysis of reference brain tissue. These resources, which include >400 terabytes of data from 1087 subjects, are now available to the research community via the NIMH Data Archive (NDA) and are described here.


Assuntos
Transtornos Mentais , Humanos , Transtorno do Espectro Autista/genética , Encéfalo , Genômica , Mosaicismo , Genoma Humano , Transtornos Mentais/genética
10.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986891

RESUMO

The mammalian cerebral cortex shows functional specialization into regions with distinct neuronal compositions, most strikingly in the human brain, but little is known in about how cellular lineages shape cortical regional variation and neuronal cell types during development. Here, we use somatic single nucleotide variants (sSNVs) to map lineages of neuronal sub-types and cortical regions. Early-occurring sSNVs rarely respect Brodmann area (BA) borders, while late-occurring sSNVs mark neuron-generating clones with modest regional restriction, though descendants often dispersed into neighboring BAs. Nevertheless, in visual cortex, BA17 contains 30-70% more sSNVs compared to the neighboring BA18, with clones across the BA17/18 border distributed asymmetrically and thus displaying different cortex-wide dispersion patterns. Moreover, we find that excitatory neuron-generating clones with modest regional restriction consistently share low-mosaic sSNVs with some inhibitory neurons, suggesting significant co-generation of excitatory and some inhibitory neurons in the dorsal cortex. Our analysis reveals human-specific cortical cell lineage patterns, with both regional inhomogeneities in progenitor proliferation and late divergence of excitatory/inhibitory lineages.

11.
Nucleic Acids Res ; 51(21): 11453-11465, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37823611

RESUMO

SINE-VNTR-Alu (SVA) retrotransposons are evolutionarily young and still-active transposable elements (TEs) in the human genome. Several pathogenic SVA insertions have been identified that directly mutate host genes to cause neurodegenerative and other types of diseases. However, due to their sequence heterogeneity and complex structures as well as limitations in sequencing techniques and analysis, SVA insertions have been less well studied compared to other mobile element insertions. Here, we identified polymorphic SVA insertions from 3646 whole-genome sequencing (WGS) samples of >150 diverse populations and constructed a polymorphic SVA insertion reference catalog. Using 20 long-read samples, we also assembled reference and polymorphic SVA sequences and characterized the internal hexamer/variable-number-tandem-repeat (VNTR) expansions as well as differing SVA activity for SVA subfamilies and human populations. In addition, we developed a module to annotate both reference and polymorphic SVA copies. By characterizing the landscape of both reference and polymorphic SVA retrotransposons, our study enables more accurate genotyping of these elements and facilitate the discovery of pathogenic SVA insertions.


Assuntos
Genoma Humano , Retroelementos , Humanos , Elementos Alu , Genoma Humano/genética , Repetições Minissatélites/genética , Retroelementos/genética , Elementos Nucleotídeos Curtos e Dispersos
12.
Nat Genet ; 55(11): 1901-1911, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37904053

RESUMO

Genetic mutations accumulate in an organism's body throughout its lifetime. While somatic single-nucleotide variants have been well characterized in the human body, the patterns and consequences of large chromosomal alterations in normal tissues remain largely unknown. Here, we present a pan-tissue survey of mosaic chromosomal alterations (mCAs) in 948 healthy individuals from the Genotype-Tissue Expression project, augmenting RNA-based allelic imbalance estimation with haplotype phasing. We found that approximately a quarter of the individuals carry a clonally-expanded mCA in at least one tissue, with incidence strongly correlated with age. The prevalence and genome-wide patterns of mCAs vary considerably across tissue types, suggesting tissue-specific mutagenic exposure and selection pressures. The mCA landscapes in normal adrenal and pituitary glands resemble those in tumors arising from these tissues, whereas the same is not true for the esophagus and skin. Together, our findings show a widespread age-dependent emergence of mCAs across normal human tissues with intricate connections to tumorigenesis.


Assuntos
Aberrações Cromossômicas , Neoplasias , Humanos , Mutação , Neoplasias/genética , Desequilíbrio Alélico , Esôfago
13.
Clin Cancer Res ; 29(24): 5128-5139, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37773632

RESUMO

PURPOSE: Leiomyosarcoma (LMS) is an aggressive sarcoma for which standard chemotherapies achieve response rates under 30%. There are no effective targeted therapies against LMS. Most LMS are characterized by chromosomal instability (CIN), resulting in part from TP53 and RB1 co-inactivation and DNA damage repair defects. We sought to identify therapeutic targets that could exacerbate intrinsic CIN and DNA damage in LMS, inducing lethal genotoxicity. EXPERIMENTAL DESIGN: We performed clinical targeted sequencing in 287 LMS and genome-wide loss-of-function screens in 3 patient-derived LMS cell lines, to identify LMS-specific dependencies. We validated candidate targets by biochemical and cell-response assays in vitro and in seven mouse models. RESULTS: Clinical targeted sequencing revealed a high burden of somatic copy-number alterations (median fraction of the genome altered =0.62) and demonstrated homologous recombination deficiency signatures in 35% of LMS. Genome-wide short hairpin RNA screens demonstrated PRKDC (DNA-PKcs) and RPA2 essentiality, consistent with compensatory nonhomologous end joining (NHEJ) hyper-dependence. DNA-PK inhibitor combinations with unconventionally low-dose doxorubicin had synergistic activity in LMS in vitro models. Combination therapy with peposertib and low-dose doxorubicin (standard or liposomal formulations) inhibited growth of 5 of 7 LMS mouse models without toxicity. CONCLUSIONS: Combinations of DNA-PK inhibitors with unconventionally low, sensitizing, doxorubicin dosing showed synergistic effects in LMS in vitro and in vivo models, without discernable toxicity. These findings underscore the relevance of DNA damage repair alterations in LMS pathogenesis and identify dependence on NHEJ as a clinically actionable vulnerability in LMS.


Assuntos
Leiomiossarcoma , Animais , Camundongos , Humanos , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Reparo do DNA/genética , Dano ao DNA , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , DNA
15.
Nature ; 619(7971): 828-836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438524

RESUMO

Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases1, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder2,3, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were 'probably' or 'possibly' amenable to ASO splice modulation, respectively. Most amenable variants were in deep intronic regions that are inaccessible to exon-targeted sequencing. We developed ASOs that successfully rescued mis-splicing and ATM cellular signalling in patient fibroblasts for two recurrent variants. In a pilot clinical study, one of these ASOs was used to treat a child who had been diagnosed with ataxia-telangiectasia soon after birth, and showed good tolerability without serious adverse events for three years. Our study provides a framework for the prospective identification of individuals with genetic diseases who might benefit from a therapeutic approach involving splice-switching ASOs.


Assuntos
Ataxia Telangiectasia , Splicing de RNA , Criança , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Estudos Prospectivos , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , Sequenciamento Completo do Genoma , Íntrons , Éxons , Medicina de Precisão , Projetos Piloto
16.
Mol Cell ; 83(15): 2624-2640, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37419111

RESUMO

The four-dimensional nucleome (4DN) consortium studies the architecture of the genome and the nucleus in space and time. We summarize progress by the consortium and highlight the development of technologies for (1) mapping genome folding and identifying roles of nuclear components and bodies, proteins, and RNA, (2) characterizing nuclear organization with time or single-cell resolution, and (3) imaging of nuclear organization. With these tools, the consortium has provided over 2,000 public datasets. Integrative computational models based on these data are starting to reveal connections between genome structure and function. We then present a forward-looking perspective and outline current aims to (1) delineate dynamics of nuclear architecture at different timescales, from minutes to weeks as cells differentiate, in populations and in single cells, (2) characterize cis-determinants and trans-modulators of genome organization, (3) test functional consequences of changes in cis- and trans-regulators, and (4) develop predictive models of genome structure and function.


Assuntos
Núcleo Celular , Genoma , Genoma/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo
17.
Nature ; 618(7967): 1024-1032, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198482

RESUMO

Focal copy-number amplification is an oncogenic event. Although recent studies have revealed the complex structure1-3 and the evolutionary trajectories4 of oncogene amplicons, their origin remains poorly understood. Here we show that focal amplifications in breast cancer frequently derive from a mechanism-which we term translocation-bridge amplification-involving inter-chromosomal translocations that lead to dicentric chromosome bridge formation and breakage. In 780 breast cancer genomes, we observe that focal amplifications are frequently connected to each other by inter-chromosomal translocations at their boundaries. Subsequent analysis indicates the following model: the oncogene neighbourhood is translocated in G1 creating a dicentric chromosome, the dicentric chromosome is replicated, and as dicentric sister chromosomes segregate during mitosis, a chromosome bridge is formed and then broken, with fragments often being circularized in extrachromosomal DNAs. This model explains the amplifications of key oncogenes, including ERBB2 and CCND1. Recurrent amplification boundaries and rearrangement hotspots correlate with oestrogen receptor binding in breast cancer cells. Experimentally, oestrogen treatment induces DNA double-strand breaks in the oestrogen receptor target regions that are repaired by translocations, suggesting a role of oestrogen in generating the initial translocations. A pan-cancer analysis reveals tissue-specific biases in mechanisms initiating focal amplifications, with the breakage-fusion-bridge cycle prevalent in some and the translocation-bridge amplification in others, probably owing to the different timing of DNA break repair. Our results identify a common mode of oncogene amplification and propose oestrogen as its mechanistic origin in breast cancer.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Amplificação de Genes , Oncogenes , Translocação Genética , Feminino , Humanos , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Oncogenes/genética , Translocação Genética/genética , Genoma Humano/genética , Quebras de DNA de Cadeia Dupla , Especificidade de Órgãos
20.
Cancer Discov ; 13(3): 654-671, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598417

RESUMO

Malignant peripheral nerve sheath tumor (MPNST), an aggressive soft-tissue sarcoma, occurs in people with neurofibromatosis type 1 (NF1) and sporadically. Whole-genome and multiregional exome sequencing, transcriptomic, and methylation profiling of 95 tumor samples revealed the order of genomic events in tumor evolution. Following biallelic inactivation of NF1, loss of CDKN2A or TP53 with or without inactivation of polycomb repressive complex 2 (PRC2) leads to extensive somatic copy-number aberrations (SCNA). Distinct pathways of tumor evolution are associated with inactivation of PRC2 genes and H3K27 trimethylation (H3K27me3) status. Tumors with H3K27me3 loss evolve through extensive chromosomal losses followed by whole-genome doubling and chromosome 8 amplification, and show lower levels of immune cell infiltration. Retention of H3K27me3 leads to extensive genomic instability, but an immune cell-rich phenotype. Specific SCNAs detected in both tumor samples and cell-free DNA (cfDNA) act as a surrogate for H3K27me3 loss and immune infiltration, and predict prognosis. SIGNIFICANCE: MPNST is the most common cause of death and morbidity for individuals with NF1, a relatively common tumor predisposition syndrome. Our results suggest that somatic copy-number and methylation profiling of tumor or cfDNA could serve as a biomarker for early diagnosis and to stratify patients into prognostic and treatment-related subgroups. This article is highlighted in the In This Issue feature, p. 517.


Assuntos
Neoplasias de Bainha Neural , Neurofibromatose 1 , Neurofibrossarcoma , Humanos , Neurofibrossarcoma/genética , Neurofibrossarcoma/diagnóstico , Neurofibrossarcoma/patologia , Histonas/metabolismo , Metilação de DNA , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neurofibromatose 1/genética , Genômica , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...